http://goo.gl/EmKxy0

Archive

Archive for the ‘SAP’ Category

Need of In-memory Technology : SAP HANA

May 6th, 2013 No comments

Challenge 1: Massive Data Growth

Massive amounts of data is being created every year and as per he IDC EMC report data growth would be 40K Exabytes by 2020 :

http://germany.emc.com/collateral/about/news/idc-emc-digital-universe-2011-infographic.pdf

http://www.emc.com/collateral/analyst-reports/idc-the-digital-universe-in-2020.pdf

Capture 2

Challenge 2: Fast access to business decision making information.

Business & People want fast exact and correct answer of all questions from this massive amount of data.

Challenge 3: Current Technologies Can not deliver with this massive data growth.

Historical DBMS :

Historically database systems were designed to perform well on computer systems with limited RAM, this had the effect that slow disk I/O was the main bottleneck in data throughput. Consequently the architecture of these systems was designed with a focus on optimizing disk access, e. g. by minimizing the number of disk blocks (or pages) to be read into main memory when processing a query.

New Hardware Architecture ( up to or more 128 Cores of CPU and 2TB of RAM)

Computer architecture has changed in recent years. Now multi-core CPUs (multiple CPUs on one chip or in one package) are standard, with fast communication between processor cores enabling parallel processing. Main memory is no-longer a limited resource, modern servers can have 1 TB of system memory and this allows complete databases to be held in RAM. Currently server processors have up to 80 cores, and 128 cores will soon be available. With the increasing number of cores, CPUs are able to process increased data per time interval. This shifts the performance bottleneck from disk I/O to the data transfer between CPU cache and main memory

Hana1

Need of In-memory Technology SAP HANA :

From the discussion above it is clear that traditional databases might not use current hardware most efficiently and not able to fulfill current and future business need.

The SAP HANA database is a relational database that has been optimized to leverage state of the art hardware. It provides all of the SQL features of a standard relational database along with a feature rich set of analytical capabilities.

Using groundbreaking in-memory hardware and software, HANA can manage data at massive scale, analyze it at amazing speed, and give the business not only instant access to real time transactional information and analysis but also more flexibility. Flexibility to analyze new types of data in different ways, without creating custom data warehouses and data marts. Even the flexibility to build new applications which were not possible before.

HANA Database Features

Important database features of HANA include OLTP & OLAP capabilities, Extreme Performance, In-Memory , Massively Parallel Processing, Hybrid Database, Column Store, Row Store, Complex Event Processing, Calculation Engine, Compression, Virtual Views, Partitioning and No aggregates. HANA In-Memory Architecture includes the In-Memory Computing Engine and In-Memory Computing Studio for modeling and administration. All the properties need a detailed explanation followed by the SAP HANA Architecture.

Source : www,sap.com and emc and idc reports.

 

Migrating SAP Sybase ASE from AIX to Linux

May 1st, 2013 No comments

Always consider to migrate the Development environment first , then UAT. Before moving to production Perform Regression testing on UAT enviornment.

Please consider to create the script to perform update stats,xp_postload(drop and re create index) for each and every database.

Steps for an ASE Database( You can repeat same steps for other databases) :

Step 1: Run the consistency checks in ASE database in Source (AIX) environment, to make sure that everything is fine.

Step 2: Put the database in single user mode.

Step3: Make sure there is no user activity on the Source Database .

Step 4: Run the sp_flushstats in the database.

Step 5: Take the backup of the database in Source (AIX) environment.

Step 6: Ftp the Files to Target environment. (AIX to Linux)

Step 7: Create and build the dataserver and databases in target Linux environment with exactly same configuration.
You might require to change some of the config param in Linux environment for performance point of view. ( Lets not discuss it here, as it is out of context).

Step 8: Also migrate the Login, roles from source server to target server

Step 9: Load the database in Linux environment.
(If there were user activity during dump process, load will be fail.)

Step 10: Online the database. If the target ASE version is new with source, It will also perform upgrade in this step.

Step 11:  Fix the corrupt indexes using the xp_postload. If the Database size is more than 20G, try drop and re-create index , in this case xp_postload would not be effective.

Step 12: Update the stats on all tables.

Step 13:  If there is replication setup in your environment, please setup replication after that.

Issue Faced:

1. If there is any user online during backup process, your load will fail( in the step for cross platform conversion).

2. After online database, we seen the -ve values in sp_helpdb output for few databases. There are two ways to fix this :

i) Try to run dbcc

dbcc usedextents(<DB name or DB ID>, 0, 1, 1)

ii) Use the Traceflag  7408 and 7409 in Run Server file and reboot the instance. It will not take much time as compare first option.

Traceflag 7408 : Force the server to scan *log segment* allocation pages; to recalculate free log space rather than use saved counts at boot time.
Traceflag 7409 : Force the server to scan *data* segment allocation pages; to recalculate free data page space rather than use saved counts at boot time.

Please let me know if you are planning for migration and need any assistance.

SAP Sybase ASE Q&A Bank

April 29th, 2013 1 comment

Wait is over Now !! 

Please download the Complete ebook for SAP Sybase ASE Q&A Bank Version 1.0  as below:

Pic

 

 

 

 

 

 

 

 

 

 

 

 

 

Introducing SAP Sybase IQ 16 : Extreme Delivery

March 3rd, 2013 No comments

Newest Features

For those who are familiar with earlier versions of Sybase IQ, here are the new features added to from SAP Sybase IQ 15.

  • Performance enhancements: The column store engine has been enhanced with extreme compression capabilities that improve I/O rates and reduce the amount of data to be stored on disk.
  • High-speed data loading: High-performance data loading ingests large amounts of data faster than ever — from terabytes to petabytes — making big data available to applications and people faster.
  • Improved scalability: Key improvements maintain high performance and efficiency for the growing volume of unpredictable, user-driven analytic workloads.
  • Data protection: Administrators have further options for protecting the security of enterprise systems.
  • Heightened availability: Enhancements help ensure that enterprise data is always available to business-critical analytics and dashboards.

 

IQ16-Engine

 

Big Data tools cost too much, do too little:SHOCKING REVELATION!!!

March 3rd, 2013 No comments

 

Big data is a necessity at scale: if you’re trying to listen to every transatlantic phonecall, you need to use MapReduce. … if you need to search the entire internet in milliseconds you need to use MapReduce, if you need to run the largest social network in the world you need to use MapReduce. If you don’t you can probably scale with a database.

Full Story @ http://www.theregister.co.uk/2013/02/28/hadoop_no_sql_dont_believe_the_hype/

 

What is SAP HANA?

February 18th, 2013 No comments

SAP HANA can be defined as an appliance that combines SAP software components optimized on hardware provided by SAP’s leading hardware partners.  It comes in a bundle of softwares along with the hardware (servers). SAP HANA servers are sold in “t-shirt” sizes ranging from Extra-Small (128GB RAM) all the way up to Extra Large (>2TB RAM) with multicore CPUs.

SAP HANA is both a database (in the traditional sense) and a database platform (in the modern sense).

In its current form SAP HANA can be used for four basic types of use case:

1. Agile Data Mart (Stand-alone database for reporting)

2. SAP business suite accelerator (secondary database for SAP business suite for reporting, calculation and analysis purpose)

3. A primary database for SAP Netweaver warehouse.

4. A development platform for new applications

 

Source: SAP

Categories: ASE, Database, Developement, HANA, SAP Tags: , , ,

Column Based Search

February 17th, 2013 No comments

To store a table in memory, two option exists: 1. Row based storage and 2. Column based storage.

In row based storage, A table is stored as a sequence of records, i.e. one full row in a data page/or consecutive data pages. It means all columns values of a table stored sequentially per row.

In column based storage, column values of a column are stoger in contiguous memory location.

Advantages of column based table storage in following circumstances

1. Calculations are typically executed on a single column or few columns only.

2. Table is searched based on values of a few columns.

3. Table has large number of columns.

4. Table has large number of rows, so that columnar operations are required (aggregate, scan etc)

5. High compression rates can be achieved because the majority of the  columns contain only few distinct values (compared to the number of rows)

Advantages of row based storage in following circumstances

1. The application needs to only process a single record at one time. (This applies to many selects and or updates of single record)

2. The application typically needs to access a complete record (or row)

3. The columns contain primarily distinct values so that compression rate would be low.

4. Neither aggregations nor fast searching is required.

5. The table has small number of rows (e.g. configuration tables)

 

Source: SAP

Top Five Reasons to Choose SAP Sybase ASE

February 13th, 2013 No comments

 

 

 

Categories: ASE, Database, HANA, SAP, Start Sybase Tags:

SAP SYbase ASE, SAP Sybase IQ and SAP HANA – In a snapshot

February 3rd, 2013 No comments
SAP Sybase ASE SAP Sybase IQ SAP HANA
High performance, reliable, scalable and resource-efficient OLTP database. Heavily optimize ASE for virtualized and cloud infrastructure    Aims to provide maximum performance and efficiency when running both OLTP and OLAP workloads on the SAME DATA and at the SAME TIME
Capability to handle transactional workloads. It is good to chose in case of budgetary constraints.   In- memory database, very high capability to handle transactional workloads.
SAP Sybase ASE is planned to be the preferred transactional database in the SAP Real-Time Data Platform for running SAP applications, SAP partner applications and custom applications    SAP HANA is planned to be the preferred database in the SAP Real-Time Data Platform for applications that need to run analytic and transactional workload on the same data at the same time 
  Sybase IQ is planned to focus on evolving columnar compression capabilities for effectively storing and processing data  SAP HANA is planned to leverage IP from Sybase IQ, such as in-database algorithms, Hadoop integration, index optimizations, and ELT capabilities for performing transforms in the Hana database 
  Plan to leverage Sybase IQ as near-line storage for SAP BW as well as leverage the technology in SAP ILM portfolio for archiving from the Business Suite Plan to leverage SAP HANA as database for native applications, SAP BW, as well as the Business Suite
  High-performance analytics server planned to deliver cost effectively for large volume data scenarios 

 Open platform for large scale data warehouse

 Analytical data mart for aged data in a BW+HANA+IQ scenario

 Cost effective data management scaling to extreme data volumes

 

 

 

 

 

Real-time platform for analytics and applications that simplified data management approaches to deliver real-time results 

 Operational / agile data mart for real-time scenarios

 Analytical data mart for complex real-time calculations

 Database for BW powered by SAP HANA

SAP SYbase ASE, SAP Sybase IQ and SAP HANA – In a snapshot

February 3rd, 2013 No comments
SAP Sybase ASE SAP Sybase IQ SAP HANA
High performance, reliable, scalable and resource-efficient OLTP database. Heavily optimize ASE for virtualized and cloud infrastructure  

 

Aims to provide maximum performance and efficiency when running both OLTP and OLAP workloads on the SAME DATA and at the SAME TIME
Capability to handle transactional workloads. It is good to chose in case of budgetary constraints.   In- memory database, very high capability to handle transactional workloads.
SAP Sybase ASE is planned to be the preferred transactional database in the SAP Real-Time Data Platform for running SAP applications, SAP partner applications and custom applications

 

  SAP HANA is planned to be the preferred database in the SAP Real-Time Data Platform for applications that need to run analytic and transactional workload on the same data at the same time

 

  Sybase IQ is planned to focus on evolving columnar compression capabilities for effectively storing and processing data

 

SAP HANA is planned to leverage IP from Sybase IQ, such as in-database algorithms, Hadoop integration, index optimizations, and ELT capabilities for performing transforms in the Hana database

 

  Plan to leverage Sybase IQ as near-line storage for SAP BW as well as leverage the technology in SAP ILM portfolio for archiving from the Business Suite Plan to leverage SAP HANA as database for native applications, SAP BW, as well as the Business Suite
  High-performance analytics server planned to deliver cost effectively for large volume data scenarios

 

 Open platform for large scale data warehouse

 Analytical data mart for aged data in a BW+HANA+IQ scenario

 Cost effective data management scaling to extreme data volumes

 

 

 

 

 

Real-time platform for analytics and applications that simplified data management approaches to deliver real-time results

 

 Operational / agile data mart for real-time scenarios

 Analytical data mart for complex real-time calculations

 Database for BW powered by SAP HANA